Interval-censored time-to-event and competing risk with death: is the illness-death model more accurate than the Cox model?

نویسندگان

  • Karen Leffondré
  • Célia Touraine
  • Catherine Helmer
  • Pierre Joly
چکیده

BACKGROUND In survival analyses of longitudinal data, death is often a competing event for the disease of interest, and the time-to-disease onset is interval-censored when the diagnosis is made at intermittent follow-up visits. As a result, the disease status at death is unknown for subjects disease-free at the last visit before death. Standard survival analysis consists in right-censoring the time-to-disease onset at that visit, which may induce an underestimation of the disease incidence. By contrast, an illness-death model for interval-censored data accounts for the probability of developing the disease between that visit and death, and provides a better incidence estimate. However, the two approaches have never been compared for estimating the effect of exposure on disease risk. METHODS This paper compares through simulations the accuracy of the effect estimates from a semi-parametric illness-death model for interval-censored data and the standard Cox model. The approaches are also compared for estimating the effects of selected risk factors on the risk of dementia, using the French elderly PAQUID cohort data. RESULTS The illness-death model provided a more accurate effect estimate of exposures that also affected mortality. The direction and magnitude of the bias from the Cox model depended on the effects of the exposure on disease and death. The application to the PAQUID cohort confirmed the simulation results. CONCLUSION If follow-up intervals are wide and the exposure has an impact on death, then the illness-death model for interval-censored data should be preferred to the standard Cox regression analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل بقای بیماران مبتلا به سرطان معده بعد از عمل جراحی، بر اساس یک مدل انعطاف پذیر در رقابت جویی خطرات

  Background and Aim: In many diagnostic studies, including surveying the survival of patients with gastric cancer where each individual after surgery can experience more than one type of event, and the occurrence of one type of event hinders the occurrence of other types of events, the question of competing risk is raised. For checking the effect of each covariate on the occurrence of any even...

متن کامل

Determining factors contributing to the five-year survival of children suffering from acute lymphoblastic leukemia based on tree survival model in the presence of competing risks

Abstract Background and objectives: Leukemia is one of the most prevalent cancers worldwide. The relapse of the disease mitigates patient survival time. The convenience of explaining the results obtained from analyzing tree models have encouraged doctors and paramedics to employ them in their research. The current study is an attempt to determine the five-year survival time and factors influen...

متن کامل

Multivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data

Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...

متن کامل

مقایسه مدل‌های بیزی پارامتریک در تحلیل عوامل مؤثر بر میزان بقای بیماران مبتلا به سرطان معده

Background & Objectives: The Cox proportional-hazards regression and other parametric models model have achieved widespread use in the analysis of time-to-event data with censoring and covariates. However employing Bayesian method has not been widely used or discussed. The aim of this study was to evaluate the prognostic factors in using Bayesian interval censoring analysis.Methods: This cohort...

متن کامل

کاربرد مدل ریسک رقابتی در شناسایی عوامل موثر بر زمان بقای بیماران مبتلا به سرطان کولورکتال

Background and Objective: Colorectal cancer is the most common cancer of digestive system in Iran.The incidence of this cancer has increased in recent years.The aim of this study was to evaluate the survival rate and to define the prognostic factors in Iranian colorectal cancer patients using competing risk model. Materials and Methods: Data recorded from 1060 patients with colorectal cancer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of epidemiology

دوره 42 4  شماره 

صفحات  -

تاریخ انتشار 2013